目前,随网络流量的需求爆发式增长,光纤通信传输速率得到大幅度的提高,其中一种提升传输速率的方式是通过更高更复杂的调制格式,这对
此外,在光谱学、计量学和生化传感等领域对激光器线宽提出了更高的要求。例如,FMCW激光雷达的线宽必须充足小,来保证在200 m以外反射回来的光也能与参考光相干。
关于半导体激光器的线宽理论大部分讨论都是基于1982年C.H.Henry的文章“Theory of the Linewidth of Semiconductor Lasers”,这篇文章较详细的给出了影响激光器线宽的因素,提出了由场振幅和场相位耦合效应导致的线宽增强因子。即相位和振幅会相互影响从而使线宽展宽。线宽公式如下:
式中,Vg为等效群速度,hv是激光线的能量,g是激光器的增益,nsp是自发辐射因子,alpham是端面损耗,Po是端面的输出功率,alpha是线年Henry阐述的半导体激光器的线宽理论,激光器的线宽大概能归因于光场的相位抖动。相位抖动一部分来源于自发辐射引起的相位变化,另一部分来源于光强的变化以及载流子密度的改变引起的相位变化。自发辐射光的相位和振幅会瞬时改变;而振幅又会反过来影响相位的大小。所以,相位的改变可以认为来自两个方面,一是自发辐射自身相位的改变;二是振幅的改变导致光场相位的改变。
上面,图2这显示的是由于自发辐射导致的光场的复振幅发生的变化。通过利用上图中构建三角形,利用三角公式能推出来自身相位的变化(公式1),通过三角公式和速率方程可以推出振幅的改变导致的光场相位的变化(公式2)。
把自发辐射速率R,再用群速度、自发辐射因子、增益等替换,光强I用功率P来替换,得到了最后的公式:
减小损耗和提高功率是相辉映的,根据公式来看对线宽有压窄效果。增大光子寿命能提高相干时间,也可以压窄线 五种压窄线宽的方式
图4 利用硅基的外腔来压窄线所示,利用硅基的外腔来压窄线宽,最近用这样的方法还是挺多的,因为混合集成的工艺被愈来愈普遍的用到。用硅基的外腔来做有两个好处:一是硅基外腔损耗小;二是外腔用来增加腔长;这两个特点都可拿来压窄线宽。
增加腔长分为增加物理腔长和增加有效腔长。增加腔长有缺点,不能无限增加,因为腔长太长会使纵模间隔太近对滤波器要求变高。
有效腔长一般是通过高Q值的环来实现的,经过控制环与直波导的耦合系数能控制有效腔长,上面图4就是增加了有效腔长。
自注入是指激光从激光器输出后,经过外腔反射再次注入谐振腔中进行进一步的受激辐射,腔内载流子发生改变,导致其他模式的增益减少,反馈模式的增益变大、强度增益大幅度的提升,抑制了其他模式。它与第一种外腔方式的区别是,第一种方式的外腔是谐振腔的一部分,而这里的外腔不是。
如图6所示,这里由于外腔反馈也会产生一些谐振峰,所以又用到两个环产生的游标效应来抑制这些谐振峰。
不需要高Q的腔,只需要一个filter。这种方法,工作点必须在其filter反射谱的上升沿,如图7(b)所示。负反馈的形成如最右边的图,如果频率上升,则反射率上升,DFB腔内光子浓度增加,DFB腔内载流子浓度下降,由于plasma效应折射率上升,则出射频率下降。
这种方式,如图8所示,总系统由两个不带隔离器的DFB、一个光衰减器、两个1*2的功分器、两个光隔离器组成。其中,两个激光器之间的光纤链路时延为10 ns。耦合效率通过光衰减器调节,在端口1和2测量频率噪声。固定其中一个激光器电流,调节另一激光器电流以及耦合强度,来找到MIL模式。
基本上最近一些相关的论文都是用以上几种方法实现压窄线宽,大同小异,有一些不严谨的地方还望大家不吝指出。